Answer of Final Exam

Geometry May 2014 For preparatory year

Question (3)

(a) Write down the equation for a rotation of axis through an angle $\pi / 4$. Hence prove that the curve $2 x y=a^{2}$ cane be transformed to $x^{2}-y^{2}=a^{2}$.

Answer

$x=\frac{1}{\sqrt{2}}(x-y), \quad=\frac{1}{\sqrt{2}}(x+y)$.
$2 x y=2 \frac{1}{\sqrt{2}}(x-y) \frac{1}{\sqrt{2}}(x+y)=x^{2}-y^{2}=a^{2}$
(b) Find the equation of the parabola with focus at $(3,-4)$ and the directrix is $6 x-7 y+5=0$.

Answer

Let the point (x, y) on the curve then the required equation is
$(x-3)^{2}+(y+4)^{2}=\left(\frac{6 x-7 y+5}{\sqrt{36+49}}\right)^{2}$
(c) Find the equation of the ellipse whose foci $(\pm 4,0)$ and its eccentricity is $1 / 3$.

Answer

$a e=a \frac{1}{3}=4$ then $a=12$
And $b^{2}=a^{2}\left(1-e^{2}\right)=144\left(1-\frac{1}{9}\right)=128$
The required equation is $\frac{x^{2}}{144}+\frac{y^{2}}{128}=1$
(d) Find the equation of the circle with center at $(6,6)$ and touch the circle $x^{2}+y^{2}=32$.

Answer

Since the circles are touch each other then the sum of two radii equal the distance between the two centers $=6 \sqrt{2}$
And the length of radius of $x^{2}+y^{2}=32$. Is $4 \sqrt{2}$ then the length of the radius of the required circle is $2 \sqrt{2}$ and its equation is $(x-6)^{2}+(y-6)^{2}=8$

$$
x^{2}+y^{2}-12 x-12 y+64=0
$$

Question (4)

(a) Find the equation of the two tangents of the hyperbola $9 x^{2}-4 y^{2}=36$ drawn from the point $(0,9)$. Find the angle between them.

Answer

The line $y=m x+\sqrt{a^{2} m^{2}-b^{2}}$ is a tangent for the hyperbola

$$
9 x^{2}-4 y^{2}=36 \text { or } \frac{9 x^{2}}{36}-\frac{4 y^{2}}{36}=\frac{x^{2}}{4}-\frac{y^{2}}{9}=1
$$

We find that $a^{2}=4$ and $b^{2}=9$
If this line passes through the point $(0,9)$. Then $9=\sqrt{a^{2} m^{2}-b^{2}}$
Substitute about a and b from equation of the curve then

$$
\begin{gathered}
9=\sqrt{4 m^{2}-9} \\
90=4 m^{2} \\
m= \pm \frac{3 \sqrt{10}}{2}
\end{gathered}
$$

The two tangent are

$$
\begin{gathered}
2 y-3 \sqrt{10} x-18=0 \quad \text { and } \quad 2 y+3 \sqrt{10} x-18=0 \\
\tan \theta= \pm \\
\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}= \pm \frac{3 \sqrt{10} / 2-(-3 \sqrt{10}) / 2}{1+(3 \sqrt{10} / 2)(-3 \sqrt{10} / 2)}= \pm \frac{3 \sqrt{10}}{1-22.5}= \pm \frac{3 \sqrt{10}}{-21.5}=0.4412480
\end{gathered}
$$

Another solution

$$
\left(9 x^{2}-4 y^{2}-36\right)\left(9 x_{1}^{2}-4 y_{1}^{2}-36\right)=\left(9 x x_{1}-4 y y_{1}-36\right)^{2}
$$

Substitute by the point $(0,9)$ then

$$
\begin{aligned}
& \left(9 x^{2}-4 y^{2}-36\right)\left(-4(9)^{2}-36\right)=(-4 y(9)-36)^{2} \\
& \left(9 x^{2}-4 y^{2}-36\right)(-360)=(-36 y-36)^{2} \\
& \left(9 x^{2}-4 y^{2}-36\right)(-360)=(-36)^{2}(y+1)^{2} \\
& \left(9 x^{2}-4 y^{2}-36\right)(-10)=36(y+1)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(9 x^{2}-4 y^{2}-36\right)(-5)=18\left(y^{2}+2 y+1\right) \\
& \left(45 x^{2}-20 y^{2}-180\right)=\left(-18 y^{2}-36 y-18\right) \\
& \left(45 x^{2}-2 y^{2}+36 y-162\right)=0 \\
& \tan \theta= \pm \frac{2 \sqrt{h^{2}-a b}}{a+b}= \pm \frac{2 \sqrt{-(45)(-2)}}{43}=0.441248
\end{aligned}
$$

(b)Prove that the circle $x^{2}+y^{2}-2 a x-2 a y+a^{2}=0$ touch the axis. Hence find the equation of the circle which touches the axis at a distance 4 from the origin.

Answer

$$
x^{2}+y^{2}-2 a x-2 a y+a^{2}=0
$$

Cane be written as

$$
(x-a)^{2}+(y-a)^{2}=a^{2}
$$

Which show that the center at (a, a) and the radius equal a. and the circle touch the axis

Another solution

put $x=0$ in the equation

$$
x^{2}+y^{2}-2 a x-2 a y+a^{2}=0
$$

then $y^{2}-2 a y+a^{2}=0$ and $(y-a)^{2}=0$

$$
y=a
$$

The intercept of y-axis one point then the circle touch y-axis The intercept of x-axis one point then the circle touch x-axis
The required equation is the same with $a= \pm 4$

$$
\begin{gathered}
x^{2}+y^{2}-2(\pm 4) x-2(\pm 4) y+(\pm 4)^{2}=0 \\
x^{2}+y^{2} \pm 8 x \pm 8 y+16=0
\end{gathered}
$$

(c) What conic the equation $4 x^{2}-9 y^{2}-16 x+54 y-101=0$ represent ? find its foci and equation of its directrix.

Answer

The equation cane be written as

$$
\left(4 x^{2}-16 x+16\right)-\left(9 y^{2}-54 y+36\right)-20-101=0
$$

$$
\begin{gathered}
(2 x-4)^{2}-(3 y-6)^{2}=36 \\
4(x-2)^{2}-9(y-2)^{2}=36 \\
\frac{4(x-2)^{2}}{36}-\frac{9(y-2)^{2}}{36}=1 \\
\frac{(x-2)^{2}}{9}-\frac{(y-2)^{2}}{4}=1
\end{gathered}
$$

Which is a horizontal hyperbola with center at $(\alpha, \beta)=(2,3)$ and $b^{2}=a^{2}\left(e^{2}-1\right)$ and $e^{2}=\frac{13}{2} \quad \rightarrow \quad e=\frac{\sqrt{13}}{3}$

Foci at $(\alpha \pm a e, \beta)=(2 \pm \sqrt{13}, 2)$ Directrix are $x=\alpha \pm \frac{a}{e}=2 \pm \frac{9}{\sqrt{13}}$ Note that

We can find the center by solving the two equations

$$
\begin{aligned}
& 8 x-16=0 \\
& -18 y+54 y=0
\end{aligned}
$$

Which show that the center is $(\alpha, \beta)=(2,3)$

